Engineering Education – Week 1 – Reading Notes

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How learning works: Seven research-based principles for smart teaching. John Wiley & Sons.

  • Opening Quote:
    • Learning depends solely on the student. Teacher only influences what the student does to learn.
    • “Learning results from what the student does and thinks and only from what the student does and thinks. The teacher can advance learning only by influencing what the student does to learn.” (Ambrose et al, 2010, p.1)
  • Research and practice
    • “Instructors need a bridge between research and practice, between teaching and learning.” (Ambrose et al, 2010, p.4)
  • Common thread for student learning
    • Why certain teaching approaches are or are not supporting students’ learning?
    • Generate or refine teaching approaches and strategies that more effectively foster student learning in specific contexts.
    • Transfer and apply these principles to new courses.
  • What is learning?
    • A process that leads to change
      • Learning is a process, not a product. But can only be measured from products or performances
      • Involves long-term change of knowledge, beliefs, behaviors, or attitudes
      • Not done to students, rather something they do themselves
  • Principles of Learning
    • Students’ prior knowledge can help or hinder learning
    • How students organize knowledge influences how they learn and apply what they know.
    • Students’ motivation determines, directs, and sustains what they do to learn.
    • To develop mastery, students must acquire component skills, practice integrating them, and know when to apply what they have learned.
    • Goal-directed practice coupled with targeted feedback enhances the quality of students’ learning.
    • Students’ current level of development interacts with the social, emotional, and intellectual climate of the course to impact learning.
    • To become self-directed learners, students must learn to monitor and adjust their approaches to learning.
  • Generic principles
    • Domain-independent
    • Experience-independent
    • Cross-culturally relevant

Mental Notes:

  • Generalizable framework for learning is very useful especially now that anyone can become a teacher, share knowledge, or explain situations more clearly. Communication is education.

Nathan, M. J., & Wagner Alibali, M. (2010). Learning sciences. Wiley Interdisciplinary Reviews: Cognitive Science, 1(3), 329-345.

  • Learning Sciences’ main themes
    • Bridging the Divide between Research and Practice
    • Limitations of Theories of Learning to Prescribe and Assess Instruction
    • Analyzing and Assessing Interventions Using Experimental and Design-Based Approaches
    • Addressing Learning and Behavior of the Individual in Interaction
  • Methods
    • From macro to micro
    • Scale-up than scale down
    • Systemic approach to complement elemental approach
  • Multidisciplinary
    • Cognitive
    • Developmental psychology
    • Educational psychology
    • Education
    • Computer science
    • Neuroscience
    • Anthropology
    • Social linguistics
    • Sociology
  • Eduneering
    • design, implement, evaluate, and redesign innovative learning approaches and tools
  • LS – Learning Sciences
    • Modern and Postmodern views of human behavior
      • Postmodernists base on ‘Critical Theory’ where they critique and change society, rather than explain it
        • Looks at assumptions and implications on a larger context
    • Constructivism and socio-cultural theory
    • Cognitive science rejected behaviorist’s reduction of mental events to observed phenomena
      • “In LS, postmodern influences are apparent in basic theoretical constructs: knowledge is sometimes viewed from the epistemology of social and radical constructivism and its situated and distributed nature is emphasized; learning is framed as changes in discourse and participation within communities, and as problem-based and project-based; and transfer is recast as preparation for future learning and in agent-centered terms that address the perceptual and conceptual generalizations constructed by the learner rather than from the viewpoint of the domain expert.” (Nathan & Wagner, 2010, p.2)
  • Bridging the Divide between Research and Practice
    • From artificial to authentic settings
    • “Incompatibilities between research and practice can be framed as a mismatch between levels of granularity of the phenomena of interest.” (Nathan & Wagner, 2010, p.3)
    • Teachers, the main beneficiaries of cognitive theories, need to learn how to apply these concepts.
  • Limitations of Theories of Learning to Prescribe and Assess Instruction
    • Elemental studies provide great frameworks but are limiting when applied to authentic settings
      • “The general point is that, on its own, an elemental approach to the study of learning faces enormous challenges of scaling up when the scientific work is called upon for application to authentic settings.” (Nathan & Wagner, 2010, p.4)
    • Has to scale up and down – from students to national policy levels
    • All have to be involved and collaborate
  • Analyzing and Assessing Interventions Using Experimental and Design-Based Approaches (eduneering)
    • Experimental designs: control groups and random assignments
      • Internal validity and causal inference
      • Low ecological validity – unnatural adaptation of tasks
      • Looking at a limited set of variables – could be missing something important
    • Design oriented philosophy (engineering design)
      • “Expanded tool kit of data collection and analysis methods” (Nathan & Wagner, 2010, p.5)
      • “Design-based research provides for flexibility of interventions and faster means of innovation—similar to what Koedinger [p. 8] refers to as ‘the hare of intuitive design’—which can be complementary to the incremental approach of experimental research—Koedinger’s ‘tortoise of cumulative science’.“ (Nathan & Wagner, 2010, p.5)
  • Addressing Learning and Behavior of the Individual in Interaction (in interaction)
    • Context and setting
    • Affordances of objects in the world
    • Embodied knowledge grounded in experiences in the physical world
    • Knowledge distributed among members of a group and tools
    • Social interactions, including shared objects and representations
    • Positioning within the participation structure
    • Shared intentionality and intersubjectivity
    • Cultural, ethnic, and class influences
  • Time scales of human behavior
    • 10 ms: biological (primarily neural)
    • 100 ms to 10s: cognitive band: perceptual and motor processes: word and object recognition to brief communicative exchanges.
    • Minutes to hours: planful, interpersonal and task oriented
    • Hours to days: social and developmental operations, classroom or on-the-job training
    • Months and beyond: organizational, developmental, generational, and cultural terms
  • Trans-scale research

Mental Notes:

  • Learning Science is profoundly interdisciplinary and vast in reach. Culmination of theories, research methods, design approaches, and implementation strategies.