Category Archives: Teacher PD

Teacher PD – Final Paper

That’s it! Last deliverable of the quarter completed!

This was a big one: 67% of the grade.

Here’s the prompt and below my response:

Final Paper

For this paper you will study in-depth a professional development program (or set of programs with similar foci) of your choosing and write a paper describing and analyzing that program(s). Be sure to select a program for which research has been conducted and reports of that research are available. Your paper should address the following topics:

  • Nature of the professional development program
  • Underlying assumptions about teaching and teacher learning
  • Summary of research conducted on the professional development program (research questions, methods, findings, conclusions)
  • Your analysis of strengths and limitations of the professional development program
  • Your analysis of strengths and limitations of the research on the PD program
  • Suggestions for future program development and research

We anticipate that the papers will need to be 15-20 pages in length to adequately address the list above. They should be written in either APA or Chicago style. APA style, described in the Publication Manual of the American Psychological Association, is the format used in the large majority of educational publications, including most of the readings for this course. Chicago style, described in the Chicago Manual of Style, is used in chapters from yearbooks of the National Society for the Study of Education.

Possible professional development programs to study:

(This list is a collection of suggestions, not an exhaustive or complete list. We encourage you to identify a PD program in your area of interest.)

  • Video Cases for Mathematics Professional Development; Learning and Teaching Geometry (Seago and colleagues)
  • Cognitively-Guided Instruction (original: Carpenter, Fennema, Franke & colleagues; more recent incarnations: Franke & Kazemi, Phillips & colleagues)
  • Video clubs (Sherin, van Es, and colleagues)
  • National Writing Project
  • Hollyhock Fellowship (CSET)
  • Partnerships for Reform in Secondary Science and Mathematics (PRiSSM; Nelson, Slavit & colleagues)
  • Project PRIME (Carlson & Gess-Newsome)
  • The Danielson Group: Promoting Teacher Effectiveness and Professional Learning
  • Online Teacher Professional Development (there are several programs; you might want to review a subset of them.)


Teacher PD – Final Presentation

After a very long weekend of deep research and exploration into Online Teacher Professional Development, I finalized the presentation and delivered to the class. It was well received with a high point commentary from Janet (professor) that “it is a very challenging topic  that was well explored and presented.”

Here it is:

Teacher PD – Final – Research Notes

oTPD (Online Teacher Professional Development

NGSX – Next Generation Science Exemplar System for Professional Development


  • June 2012 started partnering with
    • School districts
    • State departments of education
    • Informal science education providers
    • Math/science partnerships
    • 9 states to pilot the beta version of the NGSX
      • “Argumentation, Explanation, and Modeling the Behavior of Matter.”
  • The Mosakowski Institute for Public Enterprise at Clark University
  • Sarah Michaels: Clark University and Tidemark Institute Associate
  • Jean Moon: Tidemark Institute
  • Brian J. Reiser: Northwestern University and Tidemark Institute Associate


  • K-12 Science Education
  • Based on National Research Council’s (NRC) “A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas”


  • “NGSX (Next Generation Science Exemplar System) is a face-to-face learning environment, in which the participants in a study group draw on an on-line system that poses tasks for each session and provides rich cases, supportive materials, and scaffolding tools to guide the work.”
  • “teachers support students in using science and engineering practices to develop, apply, and refine disciplinary and crosscutting ideas. Teachers engage in these practices and investigate classroom cases to explore how to bring these approaches into their own classrooms.”
  • 3 hour units
  • Period of 10 weeks
  • Facilitator has his or her laptop connected to a projector for the group to view video and task prompts embedded in the site.
  • An introductory video
    • a teacher, scientist, or researcher
    • theme for the unit
      • Nature of modeling
      • Support for classroom discourse
      • Difficulties students face in reasoning about the nature of matter
  • Include classroom cases to analyze
    • 5 min clips of teachers and students engaged in modeling practices
    • Prompts for discussion
      • Modeling tasks
      • Student thinking
      • Teaching strategies
    • Work to do between sessions
      • Readings about the science practices
      • Readings about students’ learning of the subject matter
      • Directions to try out aspects of what they have learned in the participants’ own classrooms

Professional learning system

  • Digital resources
  • Guided activities
  • Interactivity with colleagues

Encourages a mix of participants

  • K-12 teachers
  • Administrators
  • Science coaches
  • Higher education pre-service faculty

Major ideas

  • NRC Framework
  • Next Generation Science Standards (NGSS)

Theoretical Underpinning

  • Community of inquiry framework

Research Tool

  • 3D learning
  • Enactment in classroom

Learning pathway for facilitators

  • Create and support a knowledge-building culture
  • Teacher leaders, coaches, and PD providers
  • Model of peer-leadership in PD that scales

NGSX Design Approach

  • Instead of learning about NGSS, teachers are learning to teach with NGSS
    • Organize PD around teacher sensemaking of classroom cases
    • Focus on high leverage practices: engaging in argumentation to develop and use explanatory models.
    • Organize teacher study groups working to apply reforms to their own practice
    • Combine focus on science, student thinking, and pedagogy
    • Develop capacity for peer-led facilitation

NGSX Pathways

  • Argumentation, Explanation, and Modeling the Behavior of Matter: Supports teacher learning about modeling, argumentation and explanation in the context of disciplinary core ideas about the nature of matter.
    • Units 1-3: Modeling and three-dimensional learning. Teachers develop and use models to explain matter phenomena (science) and explore how this reflects the shifts in the Framework and NGSS (science pedagogy).
    • Unit 4: Analyzing classroom cases to learn to build a discourse community to support modeling, argumentation, and explanation (student learning, science pedagogy).
    • Unit 5: Teachers analyze a high school classroom case of student developing and refining models to explain air pressure phenomena (student learning, science pedagogy).
    • Unit 6: Teachers analyze a middle school classroom case of students engaging in argumentation to develop particle model of matter (student learning, science pedagogy).
    • Units 7-8: Taking it back to our own classrooms: Teachers work in teams to adapt existing instructional units to integrate science and engineering practices (science pedagogy). (Currently a face to face workshop, now being embedded in two NGSX units)
  • The Facilitator Pathway: Supports facilitation strategies to guide productive discussion in teacher study groups, and to help teachers grapple with the challenges of incorporating three dimensional learning into their own classrooms.
  • Additional pathways targeted for development include a pathway in life sciences in which teachers learn to support students in argumentation, explanation, and modeling population interactions and natural selection.

More Research


Penuel, W. R. (2015). Infrastructuring As a Practice for Promoting Transformation and Equity in Design-Based Implementation Research.

  • Some teachers took went through some of the NGSX sessions
  • Challenges of research
    • High turnover in large districts
    • Shifting assignments with disregard to teacher’s background or experience
    • “These lead not just to high levels of attrition in research studies; they undercut investments by district and school leaders in subject-matter focused initiatives aimed at improving teaching and learning (Shear & Penuel, 2010).” (Penal, 2015)

Smart, S. T. E. M., & Schools, L. L. F. S. (2016). Teaching and Learning Under the Next Generation Science Standards.

  • Two initiatives combine technology-enabled case analysis within a study-group format
    • Science Teachers Learning through Lesson Analysis (STeLLA)
    • NGSX


Fusco, J., Gehlbach, H., & Schlager, M. (2000). Assessing the impact of a large-scale online teacher professional development community. InSociety for Information Technology & Teacher Education International Conference (Vol. 2000, No. 1, pp. 2178-2183).

    • closed in 2013
    • Recommends EdModo
  • Full research on this – maybe use this as the focus?

Fusco, J., Haavind, S., Remold, J., & Schank, P. (2011). Exploring differences in online professional development seminars with the community of inquiry framework. Educational Media International, 48(3), 139-149.

  • 4 sessions of 2 professional development seminars were offered to members of an organization.
  • The seminars were voluntary, free of charge, and participants did not receive credit for their attendance
  • Community of inquiry framework
    • Essential elements of an educational experience:
      • Social presence
        • How members share and interact
      • Cognitive presence
        • Engaging with the content:
          • Brainstorming
          • Exploring topics
          • Integrating information
          • Constructing understanding
          • Reflection and dialogue about understandings.
      • Teaching presence
        • Sustains the learning experience
        • Encourages inquiry
        • Consists of:
          • Design
          • Facilitation
          • Direct instruction
  • Findings
    • First year
      • Did not figure out how to motivate participants
    • Second year
      • Corrected with more interventions
      • Demonstrated the importance of seminar leader or facilitator
      • Initial activities must provide easy success
      • Motivated participants help increase social and cognitive presence in inquiry discussions
      • Social presence = higher satisfaction ratings
    • Supports CoI framework as a planning tool for the development of seminars

Farooq, U., Schank, P., Harris, A., Fusco, J. & Schlager, M. (2007). Sustaining a community computing infrastructure for online teacher professional development: A case study of designing Tapped In. Journal of Computer Supported Cooperative Work, 16(4-5), 397-429. Norwell, MA: Klewer Academic Publishers.

  • Design principles used to design 4 interventions on Tapped In
    • Amy Jo Kim’s (2000) design principles that characterize successful, sustainable online communities:
      • Build flexible, extensible gathering places.
      • Design for a range of roles.
      • Develop a strong leadership program
      • Facilitate member-run subgroups
      • Create and maintain feedback loops
  • Conceptual components utilized:
    • Multiple interaction formats and technologies.
      • Support work practices of large numbers of different groups
      • Enable users to know with whom they are interacting and what is going on around them
      • Allow users to create, store, and share discourse objects (e.g., notes, overhead slides)
      • Communicate in real time or asynchronously, as the need arises
      • Engage in group activities hosted by designers as well as their own circle of colleagues
    • Identity and trust.
    • Ownership and empowerment
    • Heterogeneity
    • Community management, leadership, and sustainability.
  • Research Method
    • Participatory design (PD)
      • Socio-technical systems theory (Mumford 1983)
        • Importance of including the membership of a community in the design process

Online PD Offerings:


  • Positive
    • Global and long standing
    • Members – constituents, journals, videos, conferences, institutes, onsite and online PD programs
    • Focused on PD
    • Wide range of content offering & well organized
      • What we teach
      • How we teach
      • Who we teach
      • How we lead
    • All modes
      • Online
      • On-Site
      • Blended
      • Literature
  • Negative
    • Could not find research done on it


  • Positive
    • Many digital tools available
      • Classroom management
      • Calendar
      • Community creation tools
      • App marketplace
      • Integration to Cloud Services
  •  Negative
    • Now overarching teaching or learning framework
    • More of a tool than an set of learning resources
    • Poor quality of content materials

PBS TeacherLine:

  • Positive
    • Facilitated and self-paced
    • Beginning and experienced teachers
    • Research based
    • Award winning
  • Negative
    • Graduate & CEU credits upon verification of a higher-ed institute
    • Only one research partner
    • Free course had no videos – just basically formatted text
    • Old fashioned navigation


  • Positive
    • Marketplace for resources
      • Classroom resources
      • Parent & Afterschool resources
      • Links to Online PD programs
    • Strong partnerships
      • NCTE
  • Negative
    • Very little videos
    • Little content
    • No community building tool

The University of North Dakota: PD for Educators

  • Positive
    • Marketplace for several online PD programs

Intel Education:

  • Self-paced but old-school

Annenberg Learner

  • All free material
  • Tons of content
  • Well organized
  • All modes

Library of Congress:

  • Free content
  • Limited online self-paced material
  • Mostly PDFs


  • Free resources
  • Links to several other providers

University of the Pacific

  • Several courses online self-paced

University of Phoenix

  • All online

University of Wisconsin STOUT

  • Online Graduate Course

Professional Development Institute

  • Online PD + tools to be used in the classroom


  • Online PD

Harvard GSE Online Programs

The Teacher’s Academy

The Heritage Institute

CE Credits Online

International Baccalaureate Online PD

Adam State University Colorado


PepperPD in association with WestEd

Professional Learning Board

TeachMe PD

San Francisco State University

Stanford Center for Professional Development

Teacher PD – Week 10 – Class Notes

Group Presentation

  • National Writing Project
  • Writing assignment
    • Prompt
      • What do you think about prior to developing a writing assignment?
    • Response (5 minutes to do it)
      • First thing I would do is create a learning objective for the assignment and a rubric for assessing it. I would share this with the students and ask if they understand the assessment and prompt for any suggestions or things they might want to change. I would then show some examples of quality work and have them assess them using the rubric. Lastly I will ask them to list 3 topics they might want to write about. Finally, I would show them some techniques of how to structure their writing in terms of content and flow of ideas.
    • Share with peer
      • Interesting: teacher would do an initial draft then work with the students to polish it up

2nd half

  • National Academy of Sciences Expert Committee Reports (
  • The New Teacher Training Program (
  • National Education Policy Center (

Hilda’s tips on oTPD


Teacher PD – Week 10 – Reading Notes

National Academies of Sciences, Engineering, and Medicine. (2015). Science Teachers Learning: Enhancing Opportunities, Creating Supportive Contexts. Committee on Strengthening Science Education through a Teacher Learning Continuum. Board on Science Education and Teacher Advisory Council, Division of Behavioral and Social Science and Education. Washington, DC: The National Academies Press. [Read Summary, Chapters 6 & 9; also recommended: Chapter 8]

  • “A Nation at Risk” – book
    • Warned of the risks of neglecting improvements in the quality of teaching in public schools
    • Next Generation Science Standards (NGSS) was a response to the book
  • Teachers are the ones who will deliver these new standards
  • Conclusions
    • Will require teachers to alter the way they teach
    • Teachers do not have adequate CK
    • Teacher PD is selected and opted-in by individual teachers
    • Teachers need better preparation
      • Differentiation
      • CK
      • PCK
    • PD programs features
      • Analysis of own practice and student work
      • Content focused
      • Alignment with district policies and practices
      • Duration
    • Online PD is effective
    • Learning occurs within and outside of school
      • PD
      • Learning communities
      • Coaching
      • etc…
    • Schools need to be supportive of PD
    • PD must be contextualized
    • Administration’s support is central to advance learning
    • Teacher leaders – support and train new
    • Closing the gap – must attend to teacher’s different learning needs
    • US lacks a coherent and well-articulated system for PD
  • Recommendations for Practice and Policy
    • Understand what are the current teacher learning opportunities
    • Support teacher PD within own context
    • PD outside of school and embedded in the work day
    • Use research-based PD
      • Clear learning goals for teachers
      • Content specific
      • Student specific
      • Link to classroom instruction analysis
      • Interact with peers
      • Analyze data on student’s learning
      • Opportunities for collaboration
    • Develop internal capacity & partner with external expertise
    • Revise policies to encourage teacher learning opportunities
    • Explore new formats and media for teacher learning
  • Chapter 6 – Professional Development Programs
    • Definition
      • Purposefully designed to support particular kinds of teacher change
      • Include a focused, multi day session for teachers that takes place outside of the teacher’s classroom or school
      • May include follow-up opportunities over the school year
      • Have a finite duration (although they can take place over a period of 2 to 3 years)
    • Several PD opportunities in catalogue (over 1000 in 1 year)
      • Disjointed and incoherent
    • Core features of research-based PD
      • Focus on content
        • Subject matter content
        • How students learn that content
      • Active learning
        • Observing expert teachers
        • Reviewing student work
        • Leading discussions
      • Coherence with learning activities
        • Aligned with other learning opportunities
        • Aligned with school, district, and state policies
    • Structural features of research-based PD
      • Form of the activity
      • Collective participation of teachers from the same school, grade, or subject
      • Duration of the activity
        • Total number of hours
        • Span of time
    • Summary
      • PD can lead to sustainable changes in teacher’s knowledge and beliefs and their instruction
      • Little research that links directly to student outcomes – but seems to work
      • More to add to the consensus model
        • Content learning is intertwined with pedagogical activities such as analysis of practice. (Heller et al., 2012; Roth et al., 2011).
        • Analysis of student learning – artifacts of practice: student work and lesson videos (Greenleaf et al., 2011; Heller et al., 2012; Roth et al., 2011)
        • Focus on teaching strategies (Greenleaf et al., 2011; Johnson and Fargo, 2010; Penuel et al., 2011; Roth et al., 2011).
        • Reflect on and grapple with challenges to their current practice (Greenleaf et al., 2011; Johnson and Fargo, 2010; Penuel et al., 2011; Roth et al., 2011).
        • Scaffolded by knowledgeable professional development leaders (Greenleaf et al., 2011; Heller et al., 2012; Penuel et al., 2011; Roth et al., 2011).
        • Analytical tools support collaborative, focused, and deep analysis of science teaching, student learning, and science content (Greenleaf et al., 2011; Roth et al., 2011).
      • Must have better designed PD research
        • Research Design
          • “Few studies used strong research designs incorporating pre-post measures of both sets of outcomes shown in Figure 6-1 (teachers’ knowledge and instruction and students’ learning) and a control or comparison group.”
        • Research Scope and missing data
          • No studies look at schools organization and context
          • No studies look at role and expertise of PD providers and facilitators
      • Online Programs
        • Explosion of PD programs offered in this media
        • Still little research on it – early stages
        • Most programs use social constructivist approach
          • Problem-based learning
          • Inquiry-based learning
          • Mentoring
          • Communities of Practice
        • Most research is Qualitative – need more Quantitative?
        • Still need expert guidance and facilitation – open discussion forum is not enough (same as face-to-face efforts)
        • Teachers are more reflective online than on face-to-face
        • Technocentricity – online is not enough – has to be well designed in the first place
    • Conclusions
      • Evidence is still not very robust
      • Few studies employ control or comparison groups
      • Most studies look at 1 study, in 1 location, with few volunteer teachers

Screen Shot 2016-03-06 at 11.31.41 AM.png

  • Chapter 9 – Conclusions, Recommendations, and Directions for Research
    • Need better designed PD
    • Need better policies and practices in schools
    • Need support from Administrators
    • Recommendations for Research
      • Create system to collect data on
        • Current workforce
          • Qualifications
          • Experience
          • Preparation
        • General trends and consensus of best-practices
        • PD opportunities
      • Improve research methods
        • Include more quantitative data
        • Use control or comparison groups
      • More research on
        • Professional learning communities
        • Mentoring
        • Coaching
        • Online Learning
        • Teacher Networks
        • Teacher evaluation
        • School Organization
        • School Context
        • Principal and Leaders influence in PD
      • Formal Recommendations
        • 1: Focus Research on Linking Professional Learning to Changes in Instructional Practice and Student Learning
        • 2: Invest in Improving Measures of Science Instruction and Science Learning
        • 3: Design and Implement Research That Examines a Variety of Approaches to Supporting Science Teachers’ Learning
        • 4: Commit to Focusing on Meeting the Needs of Diverse Science Learners Across All Research on Professional Development
        • 5: Focus Research on Exploring the Potential Role of Technology
        • 6: Design and Implement Research Focused on the Learning Needs of Teacher Leaders and Professional Development Providers

The New Teaching Project (2015). The Mirage: Confronting the hard truth about our quest for teacher development. New York: TNTP. [Read through the Recommendations; no need to read appendices.]

  • Findings (“In short, we bombard teachers with help, but most of it is not helpful—to teachers as professionals or to schools seeking better instruction.)
    • Districts are making a massive investment in teacher improvement—far larger than most people realize.
    • Despite these efforts, most teachers do not appear to improve substantially from year to year—even though many have not yet mastered critical skills
    • Even when teachers do improve, we were unable to link their growth to any particular development strategy.
    • School systems are not helping teachers understand how to improve—or even that they have room to improve at all.
  • Recommendations
    • REDEFINE what it means to help teachers improve
      • Define “development” clearly, as observable, measurable progress toward an ambitious standard for teaching and student learning.
      • Give teachers a clear, deep understanding of their own performance and progress.
      • Encourage improvement with meaningful rewards and consequences.
    • REEVALUATE existing professional learning supports and programs
      • Inventory current development efforts.
      • Start evaluating the effectiveness of all development activities against the new definition of “development.”
      • Explore and test alternative approaches to development.
      • Reallocate funding for particular activities based on their impact.
    • REINVENT how we support effective teaching at scale
      • Balance investments in development with investments in recruitment, compensation and smart retention.
      • Reconstruct the teacher’s job.
      • Redesign schools to extend the reach of great teachers.
      • Reimagine how we train and certify teachers for the job.

Hill, H.C. (2015). Review of The Mirage: Confronting the hard truth about our quest for teacher development. Boulder, CO. National Education Policy Center.

  • “… public districts invest heavily in teacher professional development, what is offered is often a poor fit to teacher needs and ultimately ineffective as a means to improving teacher evaluation scores.”
  • “… mis-match between the behaviors rewarded by teacher evaluation and the professional development features…”

Story 2: Fired, Hired, and Inspired by Kathleen Aldred

  • The story of “Mr.Z”, a ‘late-hire’ who missed the PD and involvement with the the New Teacher Institute
  • Rowdy students would not respond to his instructions
  • Previously a chef – received no teacher training
  • “Do now” strategy to quiet students down – shook hands of all incoming students
  • Teacher evaluation went bad
  • Fired
  • Re-hired by a more ‘progressive’ school

Teacher PD – Week 9 – Reading Response Assigment

Teacher PD – Reading Response
2016, Winter, Week 9
Lucas Longo


What insights about the nature and design of online PD programs and the research on online PD did you gain by reading the set of articles by Fishman & colleagues and Moon & colleagues? What is the value of this type of “conversation” among scholars in a journal?


I was pleasantly surprised initially with the results, even if conservative, that showed no “significant differences” between the online PD and the face-to-face modalities (Fishman et al, 2014). High dropout rates in MOOCS for example, might suggest that the same would occur with online PD. The population in ‘regular’ online courses are wildly different than that in online PD, yet there was a suspicion that teachers might not engage as deeply with the content as they would in face-to-face PD. The readings presented the several affordances of the online model but made clear that. I do believe that face-to-face is essential but it can be scaled down in favor of online content delivery and even community building. Further research as to what content should go online and what works best in face-to-face.

The Fishman et al 2013 piece focused on the “experimental comparison of PD delivered in two different media.” (Fishman et al, 2014). It showed that both methods of delivery work, and it “was welcomed by many as a sign that it is “safe” to employ online PD.” (Fishman et al, 2014). This research finding hopefully stimulates the market and researchers to further develop this modality to be able to scale both the training of PD facilitators and PD itself in an effective manner. The focus might start to become what subject areas and PD activities are better suited for each medium. For example, we can infer from the results that general SCK and PCK can be effectively delivered online for teachers. Yet if we think about training PD facilitators to support deep discussions around the subject or to press teachers for further inquiry, face-to-face might be more effective.

“The relative merits of online versus face-to-face conversation may vary across activities depending on the type of work planned for the teachers and the nature of sense-making and collaboration required.” (Moon, Passmore, Reiser, & Michaels, 2014, p2)

Moods’ Next Generation Science Exemplar System (NGSX) (Moon et al, 2014) seems to be a promising and solid start in exploring the hybrid modality of PD. Particularly interesting is their model of providing ‘pathways’ that enable facilitators to lead organized study groups. “There is expertise embedded in the system, in the structuring of tasks and discussions and in the ongoing commentary in embedded videos.” (Moon et al, 2014, p174) In other words, it focuses on providing research-based best-practices for leading and conducting face-to-face discussions using online content as a source of information and a scaffold for activities. This is the first I’ve seen such an effective and directed integration of the online and face-to-face methodologies; granted that my knowledge around the subject is limited, yet they strive for utilizing the best of both worlds.

The most interesting aspect of these types of “conversations” among scholars is the richness of information that emerge from it, educating us about the current state of affairs in the field in a summarized and passionate manner. Reading research papers alone you eventually form an opinion about the subject matter. This kind of dialogue between the experts you exposes to what are the controversies, the agreements, what is important or not, what needs to be changed, and what are the current theories and strategies used to tackle the field.  

One thing that was not mentioned in these readings was TPCK. My thought is that by simply exposing the teachers to the affordances of the online platforms, they might start to wonder how they might incorporate them into their own practices. Even if not explicitly a subject matter in the PDs we read about, I wonder if it was secondary effect of the teacher’s learning. They might start showing videos of other kids discussing math problems to establish norms and model the behavior. The online content can be used as an aid for teachers who are less proficient in the multiple ways of explaining a certain subject.

Finally, these papers have encouraged me to continue investigating how might we embed PCK scaffolds for instructors within online course authoring tools, beyond the ‘course on creating a course’. The idea is to have a virtual coach and some virtual students that will prompt for information, provide supporting content, and ask questions about the content at the appropriate stages of planning, developing, and submitting the online course. These papers showed that learning how to teach can happen online as well.


Fishman, B., Konstantopoulos, S., Kubitskey, B.W., Vath, R., Park, G., Johnson, H., & Edelson, D.C. (2013). Comparing the impact of online and face-to-face professional development in the context of curriculum implementation. Journal of Teacher Education, 64 (5), 426-438.

Fishman, B., Konstantopoulos, S., Kubitskey, B.W., Vath, R., Park, G., Johnson, H., & Edelson, D.C. (2014). The future of professional development will be designed, not discovered: Response to Moon, Passmore, Reiser, and Michaels, “Beyond comparisons of online versus face-to-face PD.” Journal of Teacher Education, 65 (3), 261-264.

Moon, J., Passmore, C., Reiser, B.J., & Michaels, S. (2014). Beyond comparisons of online versus face-to-face PD: Commentary in response to Fishman et al., “Comparing the impact of online and face-to-face professional development in the context of curriculum implementation.” Journal of Teacher Education, 65 (2), 172-176.


Teacher PD – Week 9 – Class Notes

Did a great group activity of proposing an online PD to the rest of the class:

  • Affordances and limitations of going to scale via online PD and by preparing PD facilitators
    • Affordance is something you may afford / buy – it’s on the shelf, it’s available but you might choose or not be able to buy it.
    • Limitation is something that is absent from the shelf – it’s not available
  • Were the teachers required to participate in the PD?
  • Was there data on the online participation?

Teacher PD – Week 9 – Reading Notes

Borko, H., Koellner, K., & Jacobs, J. (2011). Meeting the challenges of scale: The importance of preparing professional development leaders. Teachers College Record, Date Published: March 04, 2011. ID Number: 16358.

  • What Must Math Professional Development Leaders Know and Be Able to Do?
    • Engaging teachers in productive mathematical work
      • Have to give more than SCK but also multiple forms of representations and how to lead discussions about common misconceptions
    • Leading discussions about student reasoning and instructional practices
      • Must maintain focus and anchor discussions
      • Analyze student work and videos is practice
    • Building a professional community
      • PD leaders must establish norms for constructive discussions
      • Create a safe space
  • Challenge is to train PD leaders but little support from stakeholders

Borko, H., Koellner, K., & Jacobs, J. (2014). Examining novice teacher leaders’ facilitation of mathematics professional development. The Journal of Mathematical Behavior, 33, 149–167.

  • Facilitators are generally successful with
    • Workshop culture
    • Video clip selection for use in the PD workshops
  • Facilitators have a hard time with
    • Supporting discussions to foster SCK and PCK
      • Mathematical Knowledge for Professional Development (MKPD)
  • Need to prepare novice PD facilitators
    • Need to show what quality PD looks like
    • Draw candidates from practicing mathematics teachers for local, site-based PD
      • Working with adults is different than working with kids
  • 3 phase agenda for designing, implementing, and investigating scalable PD
    • 1) Design for positive impact on teacher learning
    • 2) Design for repeatability in different contexts and with different facilitators
      • Specify role of facilitator
      • Develop resources and training for facilitators
    • 3) Compare multiple PD programs on impact on teacher and student learning
  • Conceptual framework: Scalable high-quality mathematics PD
    • Structure
      • Opportunities to engage with learning community, situated in the practice of learning
      • Select and use artifacts such as student work and videos
      • Safe space: trust and respect to be able to look at own’s work
      • Model instructional strategies
    • Content
      • Mathematics Knowledge for Teaching (MKT)
        • Common content knowledge
        • Specialized content knowledge
        • Knowledge of content and students (KCS)
        • Knowledge of content and teaching (KCT)
    • Preparation of PD leaders
      • Often a missing step in educational reform efforts
      • Need to know the content and how to lead
        • “leaders must be able to identify mathematics problems and discussion prompts that promote in-depth conversations focused on the mathematics content, support productive social interactions, and orchestrate discussions that help teachers unpack their often highly symbolic or incomplete reasoning (Elliott et al., 2009).” (Borko, Koellner, & Jacobs, 2014, p151)
  • Project Design: preparing teacher leaders to facilitate the Problem-Solving Cycle (PSC)
    • How well do teacher leaders (TL) implement PSC with fidelity
      • What did they enact well?
      • What was hard to enact?
    • PSC
      • PD for TLs
      • PD for teachers
      • Improved quality of teaching
      • Improved student learning
    • Cycle
      • Teachers collaboratively solve math problems & develop plans for teaching it
      • Implement plan with own students & video tape lessons
      • Facilitators select video that represent key moments
      • Analyze and discuss material
    • Supports needed
      • Create a professional learning community
      • Facilitate discussions with teachers
      • Facilitate video-based discussions to examine student thinking and classroom instruction
  • Results
    • Workshop culture
      • TL were able to establish a safe space and engage teachers in discussions
        • “As Mandy explained, “I already knew the teachers, so the comfort level and things like that were pretty much set.” Jordan agreed, noting that “the group came together rather quickly.” (Borko, Koellner, & Jacobs, 2014, p157)
      • Eliciting thoughts about their own students’ work helped in engagement
      • Challenge is to get participants to share ideas and take intellectual risks
    • Specialized Content Knowledge
      • Solution strategies are rated higher than mathematical representations
    • Pedagogical Content Knowledge (PCK)
      • Video clip selection
        • Often hard to find examples from teacher’s practices – easier when videos are selected by PD designers
        • TL did a good job at selecting the videos though
          • BUT were not as successful in leading discussions on instructional practices or student thinking
        • TL’s training focused on video selection & launching questions
          • Have to focus more on leading discussions
      • TLs find it harder to lead discussion where teachers critique their instructional practices
        • Easier to analyze student’s mathematical reasoning
  • General Discussion and Implications
    • TLs were able to replicate PSC model in PD
    • Easily enacted characteristics
      • Climate of respect and trust
      • Collaborative working relationships
      • Suggestions for establishing and maintaining community
      • Video clip selection – teach teachers to select their own videos and share
    • Hard characteristics to enact
      • Difficulty in supporting deep analysis in discussion to foster SCK, PCK: KCS & KCT
        • They did get extensive preparation and support… but still might need more
      • TL’s content knowledge must also be increased
        • They were able to show multiple solution strategies or mathematical representations
          • BUT had a hard time discussion the relationship, affordances, and limitations of the solutions/representations
          • High- and Low-Press Exchanges
            • “The three indicators on which the TLs were rated more highly—generating and analyzing ways to solve the task, discussions of various representations, and discussions of various solution strategies—are similar to what Kazemi and Stipek (2001) referred to as “low-press exchanges” in the elementary mathematics classrooms they studied, exchanges such as solving open-ended problems in groups and sharing solution strategies. In contrast, the five indicators that entail analyzing reasoning, discussing relationships among representations or solution strategies, and discussing affordances and constraints of representations or solution strategies are similar to the “high-press exchanges” they described.” (Borko, Koellner, & Jacobs, 2014, p164)
      • More opportunities for practice
        • It’s an art just like teaching
        • Need skillful improvisation
  • Conclusion
    • Scale PD, scale PD Facilitators
    • Create a research body on MKPD
      • “We believe that these three possible domains of MKPD—specialized content knowledge, pedagogical content knowledge, and learning community knowledge—go beyond and look different than the knowledge that a typical mathematics classroom teacher holds. Because PD leaders are expected to promote the development of teachers’ knowledge in these domains, they must hold a deeper and more sophisticated knowledge of mathematics than their colleagues, just as teachers must hold a deeper and more sophisticated knowledge than their students.” (Borko, Koellner, & Jacobs, 2014, p165)

Jackson, K., Cobb, P., Wilson, J., Webster, M., Dunlap, C., & Appelgate, M. (2015). Investigating the development of mathematics leaders’ capacity to support teachers’ learning on a large scale. ZDM Mathematics Education, 47, 93-104.

  • Revised learning goals for math leaders’ learning
  • Principles for supporting math leaders’ capacity to design and lead high-quality PD
    • Sustained over time and involve the same group of teachers working together (Darling-Hammond, Wei, Andree, Richardson, & Orphanos, 2009)
    • Supports for teachers’ learning should be close to practice (Ball & Cohen, 1999)
    • Co-participation with accomplished others
    • Pedagogies of investigation and of enactment (Grossman et al., 2009)
      • Video-cases for teaching (Borko, Koellner, Jacobs, & Seago, 2011; Sherin & Han, 2004)
    • Pressing productively on teacher’s ideas
  • Worked with district over 4 cycles of PD design and deployment
  • Treating teacher learning as a progression is a must
  • Productive types of PD activities that are useful to enact in Teacher PD
    • Modeling a lesson with follow-up discussion
    • Viewing video-recordings with follow-up discussion
  • Discussion and conclusion
    • PD leaders understood and supported teachers’ learning progression
    • PD leaders used more “show-and-tell” than deep discussions and facilitations
    • Need to add a goal that focuses on the “development of new practices as a process of reorganizing their current practices that requires explicit guidance.” (Jackson, Cobb, Wilson, Webster, Dunlap, & Appelgate, 2015, p102)
    • Investigate prior Teacher PD sessions (video) and jointly plan for upcoming sessions with accomplished others, worked.
    • Need to work on supporting PD Designer “in learning how to press on particular teacher understandings and specific aspects of their practice.” (Jackson, Cobb, Wilson, Webster, Dunlap, & Appelgate, 2015, p102)
    • Use videos of the PD session itself to inform improvements in their design

Fishman, B., Konstantopoulos, S., Kubitskey, B.W., Vath, R., Park, G., Johnson, H., & Edelson, D.C. (2013). Comparing the impact of online and face-to-face professional development in the context of curriculum implementation. Journal of Teacher Education, 64 (5), 426-438.

  • Online vs face-to-face PD sessions
    • No significant differences in outcomes
    • Used the same content as a base for comparison
  • Research question and subquestions:
    • How does online PD compare with face-to-face PD in terms of effects on teachers and students when the PD content is held constant?
      • Are there differences in teachers’ learning in terms of changes in beliefs and knowledge as a function of different PD modalities?
        • Changes in teacher CK
        • Teacher’s beliefs about self-efficacy to teach
        • Teacher’s beliefs about teaching in general
      • Are there differences in teachers’ classroom practice?
        • Videotaped teacher’s practice
      • Are there differences in student learning outcomes as a function of PD modalities?
        • Student test scores
  • The Evolution of Research on Teacher Learning from PD
    • From studies of attitude and beliefs (self-reported) to teacher and student learning (classroom practice and student learning data)
    • New curriculum providers offer PD on how to implement/adopting their curriculum
  • Online PD has many benefits
    • Accommodate teachers’ busy schedules
    • Access to powerful resources no available locally
    • Supports ongoing learning
    • No need to assemble in same location
    • BUT – how about building a community amongst teaches?
  • Online PD in the research had a face-to-face general orientation session: blended/hybrid online model
  • PD standards that were being taught:
    • Making connections
    • Evidence-based decision making
    • Technology use
  • Online PD self-pacing is a great benefit
    • Teachers can go at their own pace
    • Teachers can access material in a need-to-know basis
    • Looking at material while teaching, not in a separate session

Moon, J., Passmore, C., Reiser, B.J., & Michaels, S. (2014). Beyond comparisons of online versus face-to-face PD: Commentary in response to Fishman et al., “Comparing the impact of online and face-to-face professional development in the context of curriculum implementation.” Journal of Teacher Education, 65 (2), 172-176.

  • Review of Fishman et all study
    • Design of the PD itself was underspecified
    • Assumptions on PD learning goals were not made clear
    • Not much detail about evaluation measures
  • Face-to-face vs online benefits might vary depending on specific activities and goals
    • “The relative merits of online versus face-to-face conversation may vary across activities depending on the type of work planned for the teachers and the nature of sense-making and collaboration required.” (Moon, Passmore, Reiser, & Michaels, 2014, p2)
  • PD tenets
    • Embedded in the subject matter
    • Involve active sense making and problem solving
    • Connected to issues of teachers’ own practice
  • Next Generation Science Exemplar System (NGSX)
    • Web-based learning environment for teachers
    • Does not require a skilled facilitator on-site
  • Online PD
    • Better affordances…
      • “There are affordances of online systems that simply cannot be matched in a traditional setting. However, as a field, we know little about how these web-enabled and social media capacities interact with teacher learning and whether or how they are in line with established ideas about professional learning in general.” (Moon, Passmore, Reiser, & Michaels, 2014, p3
    • Limitations of community building but the next generation of teachers is used to that!

Fishman, B., Konstantopoulos, S., Kubitskey, B.W., Vath, R., Park, G., Johnson, H., & Edelson, D.C. (2014). The future of professional development will be designed, not discovered: Response to Moon, Passmore, Reiser, and Michaels, “Beyond comparisons of online versus face-to-face PD.” Journal of Teacher Education, 65 (3), 261-264.

  • Response to Moon’s response to Fishman
  • Looked at different media in PD delivery
    • “The heart of our study was the experimental comparison of PD delivered in two different media. Our study was a “media comparison” study, the value of which has been hotly debated in the field of educational technology (Clark, 1983, 1994; Kozma, 1994).” Fishman et al, 2014)

Teacher PD – Week 8 – Class Notes

Groups of 4 discussed the readings. My group discussed Heller:

Heller: Differential Effects of Three Professional Development Models on Teacher Knowledge and Student Achievement in Elementary Science

  • Conceptual Framework
    • 3 Phase of Research PD
    • Quantitative and Qualitative Research mix
    • Same content but differing methodologies
  • PD Interventions/Conditions
    • Conditions
      • Teaching Cases
        • Dilemmas of practice
        • Focuses on student body diversity
        • Looked at other teacher’s cases
        • Cases were used as models – good for scalability
      • Looking at Student Work
        • Only intervention teachers were implementing the work in the classroom
        • Assessments became more informative about student knowledge and misconceptions
      • Metacognitive Analysis
      • Control Groups
    • All had PCK embedded
  • Research Questions
    • What effects do the teacher courses have on teacher science content test scores?
    • What effects do the teacher courses have on teacher written justifications?
    • What effects do the teacher courses have on student science content test scores?
    • What effects do the teacher courses have on student written justifications?
    • What effects do the teacher courses have on English language learner science content test scores?
    • What effects do the teacher courses have on English language learner written justifications?
  • Research Methods
    • (no time to complete)
  • Results
    • (no time to complete)
  • Why it matters
    • Better improvement for ELLs
    • (no time to complete)

Joan I. Heller, the author, came in to reply to our questions! Here were ours:

  • Only the “Looking at Student Work” group were teaching the content at the same time as the PD was being delivered – could this have affected/biased the results!?
    • Implicitly they are looking at their own practice
  • Control group with just the same content?

Then did a very informative PD simulation – lighting a lite bulb – by WestEd